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Summary. The quality of mesh elements including shape and size influences the
performance of finite elements analysis, interpolation, and contouring. The existence
of small angles is especially critical for conditioning of the stiffness matrix in finite
elements methods. In this paper we present a boundary graded triangular mesh gen-
eration algorithm that allows for guaranteed bounds on angles. Our proof program
shows that our algorithm bounds the minimum angle above 5.65◦.
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1 Introduction

There is a large body of algorithms that theoretically guarantee a quality
mesh. Mesh generation by Delaunay refinement, which allows for the mathe-
matical proofs of termination and good grading, is one of the push-button
algorithms used for constructing guaranteed quality triangular and tetra-
hedral meshes. Quality is traditionally defined in terms of the bounds on
circumradius-to-shortest-edge ratio [2].

Another kind of mesh generation algorithms that provide high quality
non-uniform meshes takes advantage of the structure of a quadtree (octree
in three-dimension). Quadtrees were introduced for domain decomposition to
generate non-uniform meshes by Yerry and Shephard [7], however, there is no
proven quality or size bounds involved in the paper.

Later, Bern, Eppstein, and Gilbert [5] studied several versions of generat-
ing triangular meshes of a planar point set or polygonally bounded domain
which guarantee well-shaped elements and small total size simultaneously
(Mitchell and Vavasis [6] extended Bern’s work in three dimensions). They
achieved angle bounds between 18.4◦ and 153.2◦ for the minimum and the
maximum angle, respectively.

Drawing inspiration from the Marching Cubes algorithm [4] and Bern et
al’s work [5], Labelle and Shewchuk [3] adopted the idea of warping and
proposed the Isosurface Stuffing tetrahedral meshing algorithm on geometric
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domains represented by a continuous cut function. The algorithm chooses
body centered cubic (BCC) lattice as background grid of excellent quality,
computes or approximates cut points, warps the vertices of background grid
to cut points, or inserts cut points from a set of predetermined stencils. The
algorithm is accompanied by guaranteed dihedral angle bounds. A variant of
the algorithm creates meshes with interior grading based on octree, however,
the authors didn’t report details on surface grading on the reason that they
can not make guarantees on dihedral angles better than 1.66◦ for min angle
or 174.72◦ for max angle.

Our work is based on the Isosurface Stuffing algorithm: we want to expand
the algorithm to more general cases, in which it provides strong angle bounds
for the meshes that allow for grading on the surface. We present preliminary
results in this paper on the proof of the 2-dimensional non-uniform boundary
grading algorithm, with minimum angle bound of 5.65◦. By placing a lower
bound on the smallest angle of a triangulation, one is also bounding the largest
angle, since in two dimensions, if no angle is smaller than θ, then no angle is
larger than 180◦ − 2θ. The Our algorithm also relies on a balanced quadtree
subdivision that offers boundary grading. We can specify any leaf side length,
which means the element size can be defined by a user. Compared with Bern’s
work, our algorithm does not suffer strict restriction on grading.

The rest of the note is organized as follows. In Section 2 we describe the
boundary grading quality mesh generation algorithm. In Section 3 we present
our angle bounds based on a computer-assisted proof. Section 4 concludes the
paper.

2 Boundary Graded Mesh Generation Algorithm

Our algorithm starts with constructing a balanced quadtree that covers
the model, then fills the quadtree leaves with high quality template elements
(isosceles right triangles), and finally warps the mesh vertices onto the model
surface, or inserts cut points from a predetermined table. Fig. 1 illustrates the
main steps performed by our algorithm. The meshes whose input is an image
are showed in Fig. 2.

2.1 Construction of the Balanced Quadtree

There are two conditions that control the quadtree splitting:

(i) the current square contains one or more selected points;
(ii) the side length of the current square is longer than the side length of

user-defined minimum leaf square.

After the quadtree subdivision, we balance it by requiring that any two neigh-
boring squares differ at most by a factor of two in size. To fill the leaves in the
quadtree to generate the background grid, we use the following strategy [1]:
we say that the side of a leaf square is split if either of the neighboring leaf
squares sharing it is split. If at least one of its side is split by a midpoint,
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(a) (b) (c) (d)

Fig. 1. An illustration of the main steps of our algorithm. (a) The input is a
continuous function: an ellipse. (b) The quadtree with leaves refined by 3 selected
points and filled with high quality template elements. (c) The background grids after
warping. (d) The final mesh.

(a) (b) (c) (d)

Fig. 2. Mesh results of the use of our algorithm. All the angles are bounded from
below by 5.65◦. (a) The original image. (b) The final mesh refined with points
everywhere on the boundary. (c) The final mesh refined with fewer points. (d) The
final mesh refined with finer elements.

introduce the center of the leaf square and connect the center to the midpoint
and the four corners of the leaf square. If none of the sides was split, we only
add one diagonal of the leaf square. After this procedure, all the leaves are
filled with isosceles right triangles.

2.2 Warping

We use two rules to decide if a background grid vertex needs to be warped: if
the distance between a cut point and a grid vertex is less than α (a parameter
in range from 0 to 0.5) times the length of grid edge; and if there are several
cut points adjoining to the grid vertex, we always choose the nearest one to
warp to, so that small elements can not be severely distorted by larger ones.

3 Proof of the Angle Bounds

We offer the angle bounds through a computer-assisted proof. We wrote
a program to find the most suitable α by which the best minimum angle can
be obtained.
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Fig. 3. (a) Predetermined table we use in our algorithm with 8 stencils. (b) Two
cases in which the angle is not monotonically increasing or decreasing. Vertex A can
move on segment EF , the green angles at A are those we concern about.

The analysis begins with the observation that in most of the stencils of
our table (Fig. 3(a)), we can get the angle extrema by only considering the
endpoints of segments: if we fix one vertex of the changeable two and move the
other along the segment, the angle is monotonically increasing or decreasing,
so we can get the angle extrema by comparing the angles obtained at the
endpoints of all segment. But there are a few exception cases, in which angles
are not monotonically changing. These cases can be grouped into only two
cases, illustrated in Fig. 3(b). We can easily prove that in these cases, the
angle extrema are also obtained at the endpoints of segments.
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Fig. 4. (a) An illustration of the reason of the equality of α for long edges and short
edges. (b) Case in which the minimum angle appears.

In some cases, certain edge (illustrated in Fig. 4(a), the red edge) can be
the long edge of one triangle and at the same time be the short edge of the
other. For the blue grid vertex in the figure, the warping distance ranges from
A to B for the left small triangle. For the right big triangle, the warping can
range from A to C. There exists a gap between B and C. If the cut point lies
in the range of B to C, for the left one, the blue point doesn’t warp; while
for the right one, it warps. This equals to forcing the α for the long edge to
become the same as α for the short edge. From this analysis, we conclude that
the value of α for the long edge and for the short edge must be set equally.
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For the uniform case, the warping distance for each stencil is the same, but
this is not the case for boundary grading, because bigger neighbors can make
smaller triangles warp their vertices a longer distance. We show the case in
which the minimum angle appears (illustrated in Fig. 4(b)). The vertex of the
green triangle shared with the red triangle can be warped a long distance along
the hypotenuse of the red triangle; the vertex shared by the green triangle and
the blue triangle can be warped the same distance as in the uniform case.

We compute the value of α within a margin of 0.000001. Our proof program
shows that when α equals to 0.309017, our algorithm bounds the minimum
angle within 5.65◦.

4 Conclusion

In this paper, we presented our 2D boundary grading mesh generation al-
gorithm. We provide the angle bounds that make the resulting meshes suitable
for FE simulation. For the future work, we want to construct a formal proof
using the Coq proof assistant to verify the angle bounds. The language used
in Coq called Gallina is more restrictive than the imperative programming
languages, and therefore provides sound logical reasoning. The results in this
paper are only a 2D preliminary work; we are planning to extend it to the 3D
tetrahedral surface grading mesh generation and its quality proof.
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